Wisture: RNN-based Learning of Wireless Signals for Gesture Recognition in Unmodified Smartphones
نویسندگان
چکیده
This paper introduces Wisture, a new online machine learning solution for recognizing touch-less dynamic hand gestures on a smartphone. Wisture relies on the standard WiFi Received Signal Strength (RSS) using a Long Short-Term Memory (LSTM) Recurrent Neural Network (RNN), thresholding filters and traffic induction. Unlike other Wi-Fi based gesture recognition methods, the proposed method does not require a modification of the smartphone hardware or the operating system, and performs the gesture recognition without interfering with the normal operation of other smartphone applications. We discuss the characteristics of Wisture, and conduct extensive experiments to compare its performance against stateof-the-art machine learning solutions in terms of both accuracy and time efficiency. The experiments include a set of different scenarios in terms of both spatial setup and traffic between the smartphone and Wi-Fi access points (AP). The results show that Wisture achieves an online recognition accuracy of up to 94% (average 78%) in detecting and classifying three hand gestures.
منابع مشابه
EMG-based wrist gesture recognition using a convolutional neural network
Background: Deep learning has revolutionized artificial intelligence and has transformed many fields. It allows processing high-dimensional data (such as signals or images) without the need for feature engineering. The aim of this research is to develop a deep learning-based system to decode motor intent from electromyogram (EMG) signals. Methods: A myoelectric system based on convolutional ne...
متن کاملReal-time Hand Gesture Recognition on Unmodified Wearable Devices
We present a machine learning technique for recognizing discrete gestures and estimating continuous 3D hand position for mobile interaction. Our multi-stage random forest pipeline jointly classifies hand shapes and regresses metric depth of the hand from a single RGB camera. Our technique runs in real time on unmodified mobile devices, such as smartphones, smartwatches, and smartglasses, comple...
متن کاملQuantative Evaluation of the Efficiency of Facial Bio-potential Signals Based on Forehead Three-Channel Electrode Placement For Facial Gesture Recognition Applicable in a Human-Machine Interface
Introduction: Today, facial bio-potential signals are employed in many human-machine interface applications for enhancing and empowering the rehabilitation process. The main point to achieve that goal is to record appropriate bioelectric signals from the human face by placing and configuring electrodes over it in the right way. In this paper, heuristic geometrical position and configuration of ...
متن کاملSpeech Emotion Recognition Using Scalogram Based Deep Structure
Speech Emotion Recognition (SER) is an important part of speech-based Human-Computer Interface (HCI) applications. Previous SER methods rely on the extraction of features and training an appropriate classifier. However, most of those features can be affected by emotionally irrelevant factors such as gender, speaking styles and environment. Here, an SER method has been proposed based on a concat...
متن کاملBringing Gesture Recognition to All Devices
Existing gesture-recognition systems consume significant power and computational resources that limit how they may be used in low-end devices. We introduce AllSee, the first gesture-recognition system that can operate on a range of computing devices including those with no batteries. AllSee consumes three to four orders of magnitude lower power than state-of-the-art systems and can enable alway...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1707.08569 شماره
صفحات -
تاریخ انتشار 2017